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Control with minimal cost-per-symbol encoding and quasi-optimality of
event-based encoders

Justin Pearson, João P. Hespanha, Daniel Liberzon

Abstract— We consider the problem of stabilizing a
continuous-time linear time-invariant system subject to commu-
nication constraints. A noiseless finite-capacity communication
channel connects the process sensors to the controller/actuator.
The sensor’s state measurements are encoded into symbols from
a finite alphabet, transmitted through the channel, and decoded
at the controller/actuator. We suppose that the transmission
of each symbol costs one unit of communication resources,
except for one special symbol in the alphabet that is “free”
and effectively signals the absence of transmission. We explore
the relationship between the encoder’s average bit-rate, its
average consumption of communication resources, and the
ability of the controller and encoder/decoder pair to stabilize the
process. We present a necessary and sufficient condition for the
existence of a stabilizing controller and encoder/decoder pair,
which depends on the encoder’s average bit-rate, its average
resource consumption, and the unstable eigenvalues of the
process. Moreover, if this condition is satisfied, a stabilizing
encoding scheme can be constructed that consumes resources
at an arbitrarily small rate, provided the encoder has access to a
sufficiently precise clock or large memory. The paper concludes
with the analysis of a simple emulation-based controller and
event-based encoder/decoder pair that are easy to implement,
stabilize the process, and have average bit-rate and resource
consumption within a constant factor of the optimal bound.

I. INTRODUCTION

We consider the problem of stabilizing a continuous-
time linear time-invariant process subject to communica-
tion constraints. The basic setup, also considered in [1–
6] and many other works, assumes that a finite capacity
communication channel connects the process sensors to
the controller/actuator. An encoder at the sensor sends a
symbol through the channel once per sampling time, and
the controller determines the actuation signal based on the
incoming stream of symbols. The question arises: what is the
smallest channel average bit-rate for which a given process
can be stabilized? It was shown in [2–4] that a necessary and
sufficient condition for stability can be expressed as a simple
relationship between the unstable eigenvalues of the open-
loop system matrix and the bit-rate of the communication
channel. Extensions of this result have been enthusiastically
explored, see [7, 8] and references therein.
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A starting point for the present work is the observation
that an encoder can effectively save communication resources
by occasionally not transmitting information — the absence
of an explicitly transmitted symbol nevertheless conveys
information. We formulate a framework to capture this by
supposing that each symbol’s transmission costs one unit of
communication resources, except for one special free symbol
that represents the absence of a transmission.

Within this framework, we define an encoder’s average
cost per symbol – essentially the largest average fraction of
non-free symbols emitted by that encoder over all possible
symbol streams. This paper’s first technical contribution is
a necessary and sufficient condition for the existence of a
stabilizing controller and encoder/decoder pair obeying a
constraint on its average cost per symbol. This condition de-
pends on the channel’s average bit-rate, the encoder’s average
cost per symbol, and the unstable eigenvalues of the open-
loop system matrix. The proof is constructive in that it ex-
plicitly provides a family of controllers and encoder/decoder
pairs that stabilize the process when the condition holds. The
pairs are optimal in the sense that they satisfy the stability
condition as tightly as desired. As the constraint on the
average cost per symbol is allowed to increase (becomes
looser), our necessary and sufficient condition recovers the
condition from [2]. Moreover, we show that if an encoder
can stabilize the process, then it can do so using arbitrarily
small amounts of communication resources per time unit.
One way to achieve this is by transmitting only a few non-
free symbols per time unit, but being very selective about
which transmission period to send them in. Alternatively, the
encoder and decoder could share a massive symbol library
so that each symbol carries sufficient information about the
state. Finally, a counterintuitive corollary to our main result
shows that if the process may be stabilized with average
bit-rate r bits per time unit, then there exists a stabilizing
controller and encoder/decoder pair using average bit-rate
r which uses no more than 50% non-free symbols in any
stream of symbols it may transmit.

It is important to point out that in our problem setup, the
transmission times are fixed; this prevents the encoder from
communicating an infinite amount of information in the (real-
valued) transmission times, which would require clocks with
infinite precision.

The encoders developed in the first part of the paper are
optimal in the sense that they can stabilize a process with
an average cost-per-symbol as low as possible. However,
they are possibly very complex and difficult to implement.
In particular, as an encoder’s cost-per-symbol approaches
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the minimum bound, its codeword library grows to infinite
size. In the last part of the paper, we develop an easily-
implementable event-based encoder/decoder and compare it
to the encoders from the paper’s first part.

Recent results in event-based control [9–12] indicate that
an encoder can conserve communication resources by trans-
mitting only on a “need-to-know” basis. Since our framework
forces transmission at fixed transmission times, it would ap-
pear to prohibit any sort of event-based control. However, our
framework can be regarded as event-based if one interprets
non-free symbols as transmission-worthy events and the free
symbol as “no transmission.”

Preliminary work in event-based control assumed that
the event-detector could transmit infinite-precision quantities
across the communication channel to the controller/actuator.
To extend this work to finite-bit-rate communication chan-
nels, recent works explore event-based quantized control,
typically introducing an encoder/decoder or quantizer in the
communication path to limit the number of bits transmit-
ted. Several recent works offer strategies for event-based
quantized control that study trade-offs between quantizer
complexity, bit-rate, and minimum inter-transmission inter-
vals. For example, [13] explores an intuitive event-based
quantized control scheme that sends single bits based on
the state estimation error transitioning between quantization
levels. The design in [14] of an event-based quantized
control scheme for a disturbed, stable LTI system allows
the state trajectory to match as closely as desired the state-
feedback state trajectory that would be obtained without
communication constraints. In [15] the authors consider the
simultaneous co-design of the event-generator and quantizer
for the control of a non-linear system using the hybrid system
framework from [16]. Sufficient bit-rates for event-triggered
stabilizability of nonlinear systems were also studied in [17].
In [18] a method is developed for event-based quantized
control design that achieves a desired convergence rate of a
Lyapunov function of the state, while guaranteeing a positive
lower bound on inter-transmission times and a uniform upper
bound on the number of bits in each transmission.

In contrast to the optimal encoders introduced in the
paper’s first part, the proposed event-based encoders are
easy to implement but not optimal. However, they are
only slightly sub-optimal. Specifically, the paper’s second
technical contribution presents a sufficient condition for the
existence of an emulation-based controller and event-based
encoder/decoder pair. The condition resembles the sufficient
condition from the paper’s first part, and exceeds it by
less than a factor of 2.5, meaning that the proposed event-
based encoding scheme needs at most 2.5 times as many
communication resources as an optimal encoding scheme
requires. This establishes that event-based encoding schemes
can offer “order-optimal” performance in communication-
constrained control problems.

The remainder of this paper is organized as follows. Sec-
tion III contains a necessary condition for stability, namely
that stability is not possible when our condition does not
hold. To prove this result we actually show that it is not
possible to stabilize the process with a large class of encoders

— which we call M -of-N encoders — that includes all
the encoders with average cost per symbol not exceeding a
given threshold. Section IV contains a sufficient condition for
stability, showing that when our condition does hold, there
is an encoder/decoder pair that can stabilize the process. We
explicitly construct a possible encoding scheme. Finally, in
Section V we develop an event-based encoding scheme that
stabilizes the process, provided a sufficient condition holds.

A subset of the results in Sections III and IV appeared
with an incomplete proof in the conference paper [19].
This paper provides a complete proof and generalizes the
problem statement to permit a larger class of encoders with
arbitrary transmission times. Preliminary work for the results
in Section V appeared in the conference paper [20].

II. PROBLEM STATEMENT

Consider a stabilizable linear time-invariant process

9x “ Ax`Bu, x P Rn, u P Rm, (1)

for which it is known that xp0q belongs to a known bounded
set X0 Ă Rn. A sensor that measures the state xptq is
connected to the actuator through a finite-data-rate, error-
free, and delay-free communication channel, see Figure 1.
An encoder collocated with the sensor samples the state at
a fixed sequence of transmission times ttk P r0,8q : k P
Ną0u, and from the corresponding sequence of measure-
ments txptkq : k P Ną0u causally constructs a sequence
of symbols tsk P A : k P Ną0u from a nonempty finite
alphabet A. Without loss of generality, A “ t0, 1, . . . , Su
with S – |A| ´ 1. At time tk the encoder sends the symbol
sk through the channel to a decoder/controller collocated
with the actuator, which causally constructs the control signal
uptq, t ě 0 from the sequence of symbols tsk P A :
k P Ną0u that arrive at the decoder. The sequence of
transmission times ttku is assumed to be monotonically
nondecreasing and unbounded (i.e., limkÑ8 tk “ `8). The
fact that the sequence of transmission times is fixed a priori
prevents the controller from communicating information in
the transmission times themselves. Note that because the
sequence of transmission times is not necessarily strictly
increasing, this allows multiple transmissions at a single time
instant, which can be viewed as encoding several symbols in
the same message. The non-negative average bit-rate r of a
sequence of symbols tsku Ă t0, . . . , Su transmitted at times
ttku is the rate of transmitted information in units of bits per
time unit, and is defined as

r – log2pS ` 1q lim sup
kÑ8

k

tk
. (2)

We assume that the symbol 0 P A can be transmitted
without consuming any communication resources, but the
other S symbols each require one unit of communication
resources per transmission. One can think of the “free”
symbol 0 as the absence of an explicit transmission. The
“communication resources” at stake may be energy, time, or
any other resource that may be consumed in the course of the
communication process. In order to capture the average rate
at which an encoder consumes communication resources,
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Fig. 1. The limited-communication setup. At time tk , the encoder samples
the plant state xptkq and selects symbol sk from alphabet A to send to the
decoder/controller. The decoder/controller constructs the actuation signal
uptq for the plant.

we define the average cost per symbol of an encoder as
follows: We say an encoder has average cost per symbol
not exceeding γ if there exists a non-negative integer N0

such that for every symbol sequence tsku generated by the
encoder, we have

1

N2

N1`N2´1
ÿ

k“N1

Isk‰0 ď γ `
N0

N2
@N1, N2 P Ną0, (3)

where Isk‰0 – 1 if the kth symbol is not the
free symbol, and 0 if it is. The summation in (3)
captures the total resources spent transmitting symbols
sN1 , sN1`1, . . . , sN1`N2´1, independent of the symbols’
transmission times. Motivating this definition of average cost
per symbol is the observation that the lefthand side has the
intuitive interpretation of the average cost per transmitted
symbol between symbols sN1

and sN1`N2´1. As N2 Ñ 8,
which corresponds to averaging over a growing window of
symbols, the rightmost term vanishes, leaving γ as an upper
bound on the average long-term cost per symbol of the
symbol sequence. To illustrate the necessity of the N0 term,
note that without it, any symbol sequence with a nonzero
symbol at some index k will violate (3) for any γ P r0, 1q
by picking N1 – k and N2 – 1; the presence of the N0

term allows an encoder to have a very small average cost
per symbol while still enabling it to transmit long runs of
non-free symbols. Note that because the left-hand side of
(3) never exceeds 1, every encoder has an average cost per
symbol not exceeding c for any c ě 1. Also, note that
any encoder with average cost per symbol not exceeding
γ “ 0 can transmit at most N0 non-free symbols for all
time, making it unsuitable for stabilization. For these two
reasons, any encoder of interest will have an average cost
per symbol not exceeding some γ P p0, 1s.

Whereas the average bit-rate r only depends on the symbol
alphabet A and transmission times ttku, the average cost
per symbol of an encoder/decoder pair depends on every
possible symbol sequence it may generate, and therefore may

in general depend on the encoder/decoder pair, the controller,
process (1), and the initial condition xp0q.

The specific question considered in this paper is: under
what conditions on the average bit-rate and average cost per
symbol do there exist a controller and encoder/decoder pair
that stabilize the state of process (1)?

III. NECESSARY CONDITION FOR BOUNDEDNESS WITH
LIMITED-COMMUNICATION ENCODERS

It is known from [2–4] that it is possible to construct a
controller and encoder/decoder pair that stabilize process (1)
with average bit-rate r only if

r ln 2 ě
ÿ

i:<λirAsą0

λirAs, (4)

where ln denotes the base-e logarithm, and the summation
is over all eigenvalues of A with nonnegative real part. The
following result shows that a larger average bit-rate r may be
needed when one poses constraints on the encoder’s average
cost per symbol γ. Specifically, when γ ě S{pS ` 1q the
(necessary) stability condition reduces to (4), but when γ ă
S{pS ` 1q an average bit-rate r larger than (4) is necessary
for stability.

Theorem 1: Suppose a controller and encoder/decoder
pair keep the state of process (1) bounded for every ini-
tial condition x0 P X0. If the encoder uses an alphabet
t0, . . . , Su, has average bit-rate r, and has average cost per
symbol not exceeding γ, then we must have

r fpγ, Sq ln 2 ě
ÿ

i:<λirAsą0

λirAs, (5)

where the function f : r0, 1s ˆ Ně0 Ñ r0,8q is defined as

fpγ, Sq–

#

Hpγq`γ log2 S
log2pS`1q 0 ď γ ă S

S`1

1 S
S`1 ď γ ď 1,

(6)

and Hppq– ´p log2ppq ´ p1´ pq log2p1´ pq is the base-2
entropy of a Bernoulli random variable with parameter p.

It is worth making three observations regarding the func-
tion f : First, fpγ, Sq is nondecreasing and continuous in γ
for any fixed S, as illustrated in Figure 2. Second, fpγ, Sq is
monotone nonincreasing in S for any fixed γ P r0, 1s. There-
fore, for a fixed r and γ, an encoder can increase its value
of fpγ, Sq “for free” by decreasing S while commensurately
decreasing its average transmission period to keep r constant
in accordance with (2). This implies that smaller alphabets
are preferable to large ones when trying to satisfy (5) with
a given fixed average bit-rate and average cost per symbol.

The third observation is that the average cost per time unit,
which is γ lim supkÑ8

k
tk

, can be made arbitrarily small
while still satisfying (5). This can be achieved in several
ways:

1) Large symbol library with infrequent transmissions:
For a given average cost per symbol γ, pick the
encoder’s transmission times as tk – kT for suffi-
ciently large T so that the average cost per time unit
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γ lim supkÑ8 k{tk “ γ{T is as small as desired. Then,
using r – log2pS ` 1q{T and leveraging the fact that

rfpγ, Sq “

#

Hpγq`γ log2 S
T 0 ď γ ă S

S`1
log2pS`1q

T
S
S`1 ď γ ď 1

(7)

is monotone increasing in S for fixed γ, pick S large
enough to satisfy (5). By choosing a large T and
S, this scheme elects to send data-rich symbols only
infrequently. The state — although remaining bounded
— may grow quite large between these infrequent
transmissions. Moreover, the large symbol library may
require sizeable computational resources to store and
process.

2) Large symbol library with costly symbols rarely sent:
If the encoder’s transmission times ttku are fixed, pick
γ small enough to make the average cost per time unit
γ lim supkÑ8 k{tk as small as desired, then increase S
as in the previous case to satisfy (5). Like the previous
case, this approach requires processing a large symbol
library.

3) Frequent transmissions with costly symbols rarely sent:
If the number of non-free symbols S is fixed, it is still
possible to choose an average cost per symbol γ and
transmission times tk – kT so that (5) is satisfied and
the average cost per time unit γ lim supkÑ8 k{tk is as
small as desired. To verify that this is possible, note that
the sequences γi – e´i, Ti – e´i

?
i, i P Ną0

have the property that as i Ñ 8, we have γi Ñ 0,
Ti Ñ 0, and γi{Ti Ñ 0, but Hpγiq{Ti Ñ 8, so
leveraging (7) we conclude that rifpγi, Sq ln 2 Ñ 8

(where ri – log2pS ` 1q{Ti). This means that one
can find i P Ną0 sufficiently large to make the average
cost per time unit arbitrarily small and also satisfy the
necessary condition (5). In practice, to operate with a
very small sampling period T , this approach requires
an encoder/decoder pair with a very precise clock.

Remark 1: The addition of the “free” symbol effectively
increases the average bit-rate without increasing the rate
of resource consumption, as seen by the following two
observations:
‚ Without the free symbols, the size of the alphabet would

be S and the average bit-rate would be

log2pSq lim sup
kÑ8

k

tk
ă log2pS ` 1q lim sup

kÑ8

k

tk
.

It could happen that this average bit-rate is too small to
bound the plant, yet after the introduction of the free
symbol, the condition (5) is satisfied.

‚ Since γ is essentially the fraction of non-free symbols,
the quantity rγ is the number of bits per time unit spent
transmitting non-free symbols. But since fpγ, Sq ě γ,
again we see that the free symbols help satisfy (5). To
see that fpγ, Sq ě γ, observe that for any S P Ną0,
fp¨, Sq is concave and reaches 1 before the identity
function does, hence it is everywhere above the identity
function on p0, 1q, and it matches the identity function
at the endpoints 0 and 1.
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Fig. 2. A plot of fpγ, Sq versus γ for S “ 1, 4, 20.

A. Setup and Proof of Theorem 1

We lead up to the proof of Theorem 1 by first establishing
three lemmas centered around a restricted but large class of
encoders called M -of-N encoders. We first define M -of-N
encoders, which essentially partition their symbol sequences
into N -length codewords, each with M or fewer non-free
symbols. Lemma 1 demonstrates that every encoder with a
bounded average cost per symbol is an M -of-N encoder for
appropriate N and M . Next, in Lemma 2 we establish a
relationship between the number of codewords available to
an M -of-N encoder and the function f as defined in (6).
Then, in Lemma 3 we establish a necessary condition for an
M -of-N encoder to bound the state of process (1). Finally,
the proof of Theorem 1 is built upon these three results.

We now introduce the class of M -of-N encoders. For N P

Ną0, ` P Ně0, we define the `th N -symbol codeword to be
the sequence ts`N`1, s`N`2, . . . , s`N`Nu of N consecutive
symbols starting at the index k “ `N`1. For M P Rě0 with
M ď N , an M -of-N encoder is an encoder for which every
N -symbol codeword has M or fewer non-free symbols, i.e.,

`N`N
ÿ

k“`N`1

Isk‰0 ďM, @` P Ně0. (8)

The total number of distinct N -symbol codewords available
to an M -of-N encoder is thus given by

LpN,M,Sq–

tMu
ÿ

i“0

ˆ

N

i

˙

Si, (9)

where the ith term in the summation counts the number
of N -symbol codewords with exactly i non-free symbols.
In keeping with the problem setup, the M -of-N encoders
considered here each draw their symbols from the symbol
library A – t0, 1, . . . , Su and transmit symbols at times
ttku.

An intuitive property of M -of-N encoders is that they
have an average cost per symbol not exceeding M{N with
N0 “ 2M . This result is presented as Lemma 5 in the
appendix.

The fact that an M -of-N encoder refrains from send-
ing “expensive” codewords effectively reduces its ability
to transmit information: A codeword sent from an M -of-
N encoder conveys log2 LpN,M,Sq bits of information,
whereas a codeword from an encoder without the M -of-N
constraint conveys log2 LpN,N, Sq “ N log2pS ` 1q bits.
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The next lemma, proved in the appendix, shows that the
set of M -of-N encoders is “complete” in the sense that every
encoder with average cost per symbol not exceeding a finite
threshold γ is actually an M -of-N encoder for N sufficiently
large and M « γN .

Lemma 1: For any encoder/decoder pair with average cost
per symbol not exceeding γ P p0, 1s, and every constant ε ą
0, there exist M P Rě0 and N P Ną0 with M ă Nγp1` εq
such that the encoder/decoder pair is an M -of-N encoder.

The next lemma establishes a relationship between the
number of codewords LpN,M,Sq available to an M -of-N
encoder and the function f defined in (6).

Lemma 2: For any N P Ną0, S P Ně0 and γ P r0, 1s, the
function L defined in (9) and the function f defined in (6)
satisfy

lnLpN,Nγ, Sq

N lnpS ` 1q
ď fpγ, Sq, (10)

with equality holding only when γ “ 0 or γ “ 1. Moreover,
we have asymptotic equality in the sense that

lim
NÑ8

lnLpN,Nγ, Sq

N lnpS ` 1q
“ fpγ, Sq. (11)

The left and right sides of (10) are plotted in Figure 3.
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Fig. 3. A plot of fpγ, Sq and lnLpN,Nγ, Sq{N lnpS` 1q versus γ for
S “ 1 and N “ 4, 12, 50.

Proof of Lemma 2. In this proof we use the base-2 logarithm
to match the notation of an information theoretic theorem
that we invoke. Let N P Ną0 and S P Ně0 be arbitrary.
First we prove (10) for γ P

´

0, S
S`1

ı

. Applying the Binomial
Theorem to the identity 1 “ pγ ` p1´ γqqN , we obtain

1 “
N
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i.

Since each term in the summation is positive, keeping only
the first tNγu terms yields the inequality

1 ą

tNγu
ÿ

i“0

ˆ

N

i

˙

γip1´ γqN´i. (12)

Next, a calculation presented as Lemma 6 in the appendix
reveals that

γip1´ γqN´i ě 2´N Hpγq Si

SNγ
(13)

for all N,S P Ną0, γ P
´

0, S
S`1

ı

, and i P r0, Nγs. Using
this in (12) and taking log2 of both sides yields

log2 LpN,Nγ, Sq

N
ă Hpγq ` γ log2 S. (14)

By the definition of f , we have log2pS ` 1qfpγ, Sq “

Hpγq ` γ log2 S when γ P
”

0, S
S`1

ı

. Thus, (14) proves the

strict inequality in (10) for γ P
´

0, S
S`1

ı

. Next, suppose

γ P

´

S
S`1 , 1

¯

and observe from (9) that LpN,M,Sq is
a sum of positive terms whose index reaches tM u, hence
LpN,Nγ, Sq is strictly less than LpN,N, Sq for any γ ă 1.
We conclude that

log2 LpN,Nγ, Sq

N
ă

log2 LpN,N, Sq

N
“ log2pS ` 1q “ log2pS ` 1qfpγ, Sq, (15)

where the first equality follows simply from the fact that
LpN,N, Sq is the number of all possible codewords of length
N and hence equals pS ` 1qN , and the second equality
follows from the definition of f when γ P p S

S`1 , 1q. This
concludes the proof of the strict inequality in (10) for γ P
p0, 1q. The proof of (10) for γ “ 0 follows merely from
inspection of (10), and the γ “ 1 case follows from (15).
Next we prove the asymptotic result (11) using information-
theoretic methods. First we prove (11) for γ P r0, S

S`1 q.
Consider a random variable X parameterized by S P Ně0

and γ P r0, S
S`1 q which takes values in X – t0, 1, . . . , Su

with probabilities given by PpX “ 0q– p1´γq and PpX “

iq – γ{S, i “ t1, 2, . . . , Su. Following our convention, we
call 0 the “free” symbol and 1, . . . , S the “non-free” symbols.
To lighten notation we write ppxq– PpX “ xq, x P X . The
entropy of the random variable X is

HpXq– ´

S
ÿ

i“0

ppiq log2 ppiq “ Hpγq ` γ log2 S, (16)

where we have overloaded the symbol H so that Hpγq –
´γ log2 γ´p1´γq log2p1´γq is the entropy of a Bernoulli
random variable with parameter γ.
Next, for some arbitrary N P Ną0, we consider N -
length sequences of i.i.d. copies of X . Let XN –

tpx1, . . . , xN q : xi P X u. We use the symbol xN as short-
hand for px1, . . . , xN q, and we use ppxN q as shorthand for
P
´

pX1, X2, . . . , XN q “ px1, x2, . . . , xN q
¯

.

Given an N -length sequence xN P XN , the probability that
the N i.i.d. random variables pX1, . . . , XN q take on the
values in the N -tuple xN is given by

ppxN q “ p1´ γqN´
řN
i“1 Ixi‰0

γ
řN
i“1 Ixi‰0

S
řN
i“1 Ixi‰0

. (17)

The summation
řN
i“1 Ixi‰0 is the number of non-free sym-

bols in the N -tuple xN .
For arbitrary ε ą 0, define the set ApNqε Ď XN as

ApNqε –
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#

xN P XN
ˇ

ˇ

ˇ
N pγ ´ δεq ď

N
ÿ

i“1

Ixi‰0 ď N pγ ` δεq

+

,

(18)

where δε – ε{ log2
p1´γqS

γ . That is, ApNqε is the set of all
N -length sequences with “roughly” Nγ non-free symbols.
Using (16), (17), and the definition of δε, we can express the
inequalities in (18) as

ApNqε “
!

xN P XN
ˇ

ˇ

ˇ
2´NpHpXq`εq ď ppxN q ď 2´NpHpXq´εq

)

.

(19)

Here we relied on the fact that p1´γqS
γ ą 1 for S P

Ną0, γ P r0,
S
S`1 q. In the form of (19), we recognize ApNqε

as the so-called “typical set” of N -length sequences of i.i.d.
copies of X as defined in [21]. Theorem 3.1.2 of [21] uses
the Asymptotic Equipartition Property of sequences of i.i.d.
random variables to prove that for any ε ą 0, we have

p1´ εq2NpHpXq´εq ď
ˇ

ˇ

ˇ
ApNqε

ˇ

ˇ

ˇ
(20)

for N P Ną0 large enough.
Next, we observe that

ˇ

ˇ

ˇ
ApNqε

ˇ

ˇ

ˇ
ď L pN,N pγ ` δεq , Sq , (21)

because |ApNqε | is the number of N -length sequences with a
number of non-frees in the interval rNpγ ´ δεq, Npγ ` δεqs,
whereas the right-hand side counts sequences with a number
of non-frees in the larger interval r0, Npγ`δεqs. Combining
(20) and (21), we obtain that for any ε ą 0,

1

N
log2p1´ εq `Hpγq ` γ log2 S ´ ε ď

1

N
log2 L pN,N pγ ` δεq , Sq (22)

for N large enough. Moreover, by (10) we have

1

N
log2 L pN,N pγ ` δεq , Sq ď

H pγ ` δεq ` pγ ` δεq log2 S (23)

for any γ P r0, S
S`1 q, N,S P Ną0, and ε ą 0. Combining

these two observations establishes an upper and lower bound
on 1

N log2 L pN,N pγ ` δεq , Sq. Letting ε Ñ 0, the upper
and lower bounds converge to Hpγq`γ log2 S , establishing
(11) for γ P r0, S

S`1 q. Since the upper and lower bounds are
continuous in γ, this proves (11) for γ “ S

S`1 as well.
Lastly, suppose γ P p S

S`1 , 1s. Since L is monotonically
nondecreasing in its second argument, we have

1

N
log2 L

ˆ

N,N
S

S ` 1
, S

˙

ď
1

N
log2 L pN,Nγ, Sq .

(24)

Moreover, by (10) we have

1

N
log2 L pN,Nγ, Sq ď log2pS ` 1q. (25)

Combining these establishes an upper and lower bound on
1
N log2 L pN,Nγ, Sq. Taking N Ñ 8, the bounds become

equal because (11) holds for γ “ S
S`1 in the lower bound.

Here we relied on the fact that fpγ, Sq is continuous in γ.
We obtain

lim
NÑ8

1

N
log2 L pN,Nγ, Sq “ log2pS ` 1q. (26)

This concludes the proof of Lemma 2.

The following lemma provides a necessary condition for
an M -of-N encoder to be able to bound the state of process
(1).

Lemma 3: Consider an M -of-N encoder/decoder pair
with average bit-rate r using a channel with alphabet
t0, . . . , Su (with 0 the free symbol). If the pair keeps the
state of process (1) bounded for every initial condition, then
we must have

r
lnLpN,M,Sq

N lnpS ` 1q
ln 2 ě

ÿ

i:<λirAsą0

λirAs. (27)

Proof of Lemma 3. The proof of this result can be con-
structed using an argument similar to the ones found in [2, 4],
which considers the rate at which the uncertainty on the state,
as measured by the volume of the set where it is known
to lie, grows through the process dynamics (1) and shrinks
upon the receipt of each N -symbol codeword. Details on this
argument can be found in the technical report [22].

Now we are ready to prove Theorem 1.

Proof of Theorem 1. If γ “ 0, then the encoder transmits at
most N0 non-free symbols, and therefore cannot bound an
unstable system for all time. We assumed that the encoding
scheme keeps the state of process (1) bounded, so we must
have

ř

i:<λirAsą0 λirAs “ 0, and so (5) is satisfied trivially.
Now suppose γ ą 0. By Lemma 1, for any ε ą 0 there exist
M P Rě0 and N P Ną0 with M ă Nγp1 ` εq for which
the encoder/decoder is an M -of-N encoder. Since the state
of the process is kept bounded, by Lemma 3 we have

ÿ

i:<λirAsą0

λirAs ď r
lnLpN,M,Sq

N lnpS ` 1q
ln 2. (28)

Since L is monotonically nondecreasing in its second argu-
ment and M ă Nγp1` εq, we have

r
lnLpN,M,Sq

N lnpS ` 1q
ď r

lnLpN,Nγp1` εq, Sq

N lnpS ` 1q
. (29)

Lemma 2 implies that

r
lnLpN,Nγp1` εq, Sq

N lnpS ` 1q
ď rfpγp1` εq, Sq. (30)

Combining these and letting ε Ñ 0, we obtain (5). This
completes the proof of Theorem 1.
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IV. SUFFICIENT CONDITION FOR STABILITY WITH
LIMITED-COMMUNICATION ENCODERS

The previous section established a necessary condition (5)
on the average bit-rate and average cost per symbol of an
encoder/decoder pair in order to bound process (1). In this
section, we show that with a strict inequality this condition is
also sufficient for a stabilizing encoder/decoder to exist. The
proof is constructive in that we provide the encoder/decoder.

The proposed scheme is sometimes called emulation-
based because the encoder/decoder emulates a stabilizing
state-feedback controller u “ Kx. This state-feedback
controller cannot be used in the limited-communication
environment considered in this paper because the infinite-
precision state xptq P Rn cannot be sent over the channel and
hence is unavailable to the controller. Instead, in emulation-
based control, the state-feedback controller is coupled to
an encoder/decoder pair that estimates the state as x̂ptq,
resulting in the control law uptq “ Kx̂ptq, t ě 0.

Theorem 2: Assume that A` BK is Hurwitz. For every
S P Ně0, r ě 0, and γ P r0, 1s satisfying

rfpγ, Sq ln 2 ą
ÿ

i:<λirAsą0

λirAs, (31)

where the function f is defined in (6), there exists an
emulation-based controller and an M -of-N encoder/decoder
pair that uses S non-free symbols, has average bit-rate not
exceeding r, has an average cost per symbol not exceeding
γ, and exponentially stabilizes process (1) for every initial
condition x0 P X0.

Remark 2: The encoding scheme that follows relies on a
strict inequality in (31) for the existence of a suitable M -
of-N encoder, and as that gap shrinks to 0, the codeword
length N becomes unbounded. In contrast, the event-based
encoding scheme presented in Section V has the property
that if its corresponding data-rate condition (68) holds with
equality, the scheme bounds the state of the process, cf.
Remark 5.

The proof of Theorem 2 uses the following lemma,
proved in the appendix, which establishes a useful coordinate
transformation for the error system of an emulation-based
controller.

Lemma 4: Consider the process and the (open-loop) state
estimator

9xptq “ Axptq `Buptq, xptkq “ x0 @t P rtk, tk`1q

(32)
9̂xptq “ Ax̂ptq `Buptq, x̂ptkq “ x̂0 @t P rtk, tk`1q.

(33)

There exists a time-varying matrix P ptq P Rnˆn such that
for any tk, tk`1, x0, x̂0, the state estimation error

eptq– P ptqpxptq ´ x̂ptqq (34)

satisfies

eiptq “ eaipt´tkqGipt´ tkqeiptkq, eiptq P Rdi , (35)

for all t P rtk, tk`1q and all i P t1, . . . , nbu, where nb is the
number of real Jordan blocks in the real Jordan normal form

of A, ai is the real part of the eigenvalue associated with
Jordan block i, and di is the geometric multiplicity of that
eigenvalue; the time-varying real matrix Giptq has the form

Giptq–

»

—

—

—

—

—

–

1 t t2

2! . . . tdi´1

pdi´1q!

1 t
. . .

1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rdiˆdi (36)

if the ith Jordan block corresponds to a real eigenvalue, and

Giptq–

»

—

—

—

—

—

–

I2 I2t I2
t2

2! . . . I2
tdi´1

pdi´1q!

I2 I2t
. . .

I2

fi

ffi

ffi

ffi

ffi

ffi

fl

P R2diˆ2di

(37)

if it corresponds to a complex conjugate pair, where I2 –
„

1 0
0 1



. Moreover, there exists a positive scalar εP for which

σminpP ptqq ě εP @t ě 0, (38)

where σminp¨q denotes the smallest singular value of a matrix.

A. Proof of Theorem 2

The basic idea of the proof is as follows. The encoder and
decoder each run internal copies of the process to compute
an estimate x̂ of the state. Since there is no channel noise,
the encoder’s and decoder’s state estimates will be equal,
which corresponds to an information pattern “encoder class
1a” in the terminology of [23].

The encoder monitors the state estimation error and pe-
riodically transmits symbols to the decoder that essentially
encode a quantized version of the error, making sure that
the average cost per symbol does not exceed γ. The decoder
then uses those symbols to update its state estimate x̂.

1) Definition of the encoding and decoding scheme: We
first select the integers M and N for our M -of-N encoder.
Assume that S, r, and γ satisfy (31), so that

η – rfpγ, Sq ln 2´
ÿ

i:<λirAsą0

λirAs ą 0. (39)

In view of (10) and (11), we conclude that we can pick N
sufficiently large to satisfy

rfpγ, Sq ln 2´ r
lnLpN,Nγ, Sq

N lnpS ` 1q
ln 2 ă η{2, (40)

and we then define M – Nγ. By Lemma 5 in the appendix,
this encoder has an average cost per symbol not exceeding
γ.

Now we specify which N -length codewords will be trans-
mitted. Here is the basic idea: The encoder and decoder each
estimate the state of the process as x̂ptq as defined in (33),
with t0 – 0 and x̂pt0q– 0. The encoder monitors the state
estimation error eptq – P ptqpxptq ´ x̂ptqq, where P ptq is
determined by Lemma 4. For each of the nb error subsystems
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eiptq P Rdi given by (35) we employ a sub-encoder i that
monitors eiptq and every Ti time units (to be defined shortly)
transmits to the decoder a set of N -length codewords with
M or fewer non-free symbols from the alphabet t0, . . . , Su.
The chosen set of codewords is essentially the index of the
di-dimensional quantization cell in which eipkTiq P Rdi lies.
Based on this set of codewords, the encoder and decoder each
adjusts their state estimates, and the procedure repeats.

We now define the scheme formally. We first select the
transmission periods Ti: partition the nb error systems based
on whether or not they are stable:

S – ti P t1, . . . , nbu : ai ă 0u

U – ti P t1, . . . , nbu : ai ě 0u,

where ai is the real part of the ith eigenvalue of A. For the
subsequent argument, in the case that ai “ 0 we add a small
positive number to it so that (31) still holds, and use the
same label ai to denote this number. Note that, in contrast
with the previous section, we treat eigenvalues with zero real
part as unstable.

The error dynamics for ei with i P S are stable and so
there is no need to transmit information on behalf of ei,
i P S, since these errors will converge to zero exponentially
fast. So there is no need to define Ti for i P S. For i P U ,
we select the transmission period for sub-encoder i to be

Ti – ci
lnLpN,M,Sq

ai

1

1` η{p2
ř

i:<λirAsą0 λirAsq
, (41)

where the positive integer ci is chosen large enough so that
Ti satisfies

dj´1
ÿ

j“0

T ji
j!
ă eκTi (42)

where κ– aiη{p4
ř

i:<λirAsą0 λirAsq ą 0.
Note that for those eigenvalues whose real part was 0,

the transmission period can be arbitrarily large (but finite)
because the positive number that was added to them can be
arbitrarily small.

Now we specify how the sub-encoder i selects which
codeword to transmit. For i P S no symbols are transmitted.
For i P U , the ith sub-encoder initializes with Li,0 –

supx0PX0
}x0}8 and at time kTi, k P Ną0, performs the

following steps:
1) Divide the di-dimensional box epai`κqTiLi,k´1r´1, 1sdi

into LpN,M,Sqcidi smaller boxes of equal size by
dividing each of its di dimensions into LpN,M,Sqci

intervals of equal length. the sub-encoder i determines
in which of these boxes the error eipkTiq

´ lies and
transmits this information to the decoder. Since there are
LpN,M,Sqcidi boxes, this requires sending exactly cidi
M -of-N codewords.
Let Bi,k Ă Rdi denote the indicated box, bi,k P Rdi
denote the box’s center, and wi,k denote the transmitted
set of codewords. Note that set Bi,k ´ bi,k Ă Rdi is a
cube centered at 0.

2) Update the state estimate as

x̂pkTiq
` “ x̂pkTiq

´ ` I 1ibi,k, (43)

where x̂`ptq – limτÓt x̂pτq and x̂´ptq – limτÒt x̂pτq,
and the matrix Ii P Rdiˆn “extracts” from the error eptq
its component eiptq such that eiptq “ Iieptq.

3) Define

Li,k – sup
zPBi,k´bi,k

}z}8 (44)

The sequences twi,ku, tBi,ku, tbi,ku, and tLi,ku are
available both to the encoder and the decoder, so the decoder
can maintain and update its own state estimate via Step 2,
which is used by the state feedback controller u – Kx̂.
We now show that the proposed encoding/decoding scheme
satisfies the conditions of Theorem 2, namely that the state
goes to 0 and that the average bit-rate is at most r.

2) The scheme exponentially stabilizes the process: From
process (1) and the definition of eptq in (34), the control law
u “ Kx̂ results in the following closed-loop dynamics:

9xptq “ pA`BKqxptq ´BKeptq. (45)

Since A ` BK is Hurwitz, the state xptq converges expo-
nentially to 0 provided that eptq Ñ 0 exponentially. We
now prove that eptq Ñ 0 exponentially under the proposed
scheme.

The basic idea is as follows: On one hand, in view of (35)
and (42), the error eiptq grows in magnitude by a factor less
than epai`κqTi in the Ti time units between the transmission
of sets of codewords. On the other hand, every Ti time
units the ith sub-encoder sends LpN,M,Sqcidi codewords,
allowing the ith sub-decoder to reduce its uncertainty of eiptq
by a factor of LpN,M,Sqcidi . We will show that condition
(31) in Theorem 2 implies that LpN,M,Sqcidi ą epai`κqTi ,
meaning that the sub-decoder’s uncertainty in eiptq shrinks
faster than the error dynamics expands eiptq. Therefore the
decoder can determine eptq and drive it to 0.

First we prove by induction that the rule (43) for updating
the state estimate guarantees that }eipkTiq`}8 ď Li,k. From
the definition of eptq and Ii we have

eipkTiq
´ “ IiepkTiq

´ “ Ii
`

xpkTiq
´ ´ x̂pkTiq

´
˘

. (46)

Solving the update rule (43) for x̂pkTiq´ and substituting
the result into (46) yields

eipkTiq
´ “ Ii

`

xpkTiq
´ ´

`

x̂pkTiq
` ´ I 1ibi,k

˘˘

“ eipkTiq
` ` bi,k, (47)

where we used the fact that xpkTiq´ “ xpkTiq
` due to

the continuity of the solution xptq. Next, suppose by the
induction hypothesis that }eippk´1qTiq

`}8 ď Li,k´1. Then
we have

}eippk ´ 1qTiq
`}8 ď Li,k´1 (48)

ô eippk ´ 1qTiq
` P Li,k´1r´1, 1sdi (49)

ñ eipkTiq
´ P eaiTi}GipTiq}8Li,k´1r´1, 1sdi

(50)

ñ eipkTiq
´ P epai`κqTiLi,k´1r´1, 1sdi ,

(51)
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where (50) holds because eiptq follows the dynamics (35) be-
tween transmissions, and (51) follows because Ti was chosen
to satisfy (42) and we have }GipTiq}8 “

řdj´1
j“0 T ji {j!.

Moreover, the set in (51) is precisely the box in Step 1 of
the proposed scheme, so therefore we must have eipkTiq´ P
Bi,k. Applying (47) yields eipkTiq

` P Bi,k ´ bi,k, and
therefore

}eipkTiq
`}8 ď sup

zPBi,k´bi,k

}z}8 — Li,k. (52)

This demonstrates that }eipkTiq`}8 ď Li,k for all k P Ną0.
From Step 1 of the encoding scheme, the length Li,k

is essentially the side-length of the cube Bi,k. The set
Bi,k was constructed by dividing every dimension of
epai`κqTiLi,k´1r´1, 1sdi into LpN,M,Sqci pieces. There-
fore the lengths Li,k are recursively related via

Li,k “
epai`κqTi

LpN,M,Sqci
Li,k´1, (53)

and therefore

Li,k “ eRkLi,0, (54)

where

R – ln
´ epai`κqTi

LpN,M,Sqci

¯

. (55)

The transmission period Ti and κ were chosen in (41) to
satisfy

epai`κqTi

LpN,M,Sqci
ă 1, (56)

and so R ă 0. Therefore the event boundaries Li,k shrink to
0 at an exponential rate.

This implies that eiptq Ñ 0 exponentially, as follows. For
any time t we have t “ kTi ` t, where k – tt{Tiu and
t P r0, Tiq. Therefore

}eiptq}8 “ }eipkTi ` tq}8 (57)
ď eait}Giptq}8}eipkTiq

`}8 (58)

ď eaiTi}GipTiq}8}eipkTiq
`}8 (59)

ď eaiTi}GipTiq}8Li,k (60)

“ eaiTi}GipTiq}8Li,0e
Rk (61)

ď eaiTi}GipTiq}8Li,0e
´ReRt{Ti , (62)

where (58) follows from the error dynamics (35), (60)
follows from (52), and (61) follows from (54). Since R ă 0,
this establishes that eiptq Ñ 0 at an exponential rate. Since
this holds for all i, eptq exponentially converges to 0 as well.
Therefore by (45), the state xptq exponentially converges to
0.

3) The scheme’s average bit-rate does not exceed r: Since
each sub-encoder is transmitting independently, the average
bit-rate of this encoding scheme as a whole is simply the sum
of the sub-encoder’s average bit-rates. For i P S, the ith sub-
encoder never transmits. For i P U , every Ti time units the
ith sub-encoder sends cidi codewords, each from a codeword
library of length LpN,M,Sq. Therefore its average bit-rate

is ri – cidi log2 LpN,M,Sq{Ti. The encoder’s total average
bit-rate is therefore

ÿ

iPU
ri “ log2 LpN,M,Sq

ÿ

iPU

cidi
Ti

.

Leveraging (41) yields

ÿ

iPU
ri ď

1

ln 2

˜

1`
η

2
ř

i:<λirAsą0 λirAs

¸

ÿ

iPU
diai. (63)

Since U contains the non-negative real parts of the eigen-
values of A, we have

ř

iPU diai “
ř

i:<λirAsą0 λirAs. From
this and (63) we conclude that

ÿ

iPU
ri ď

1

ln 2

¨

˝

ÿ

i:<λirAsą0

λirAs `
η

2

˛

‚

ă r
lnLpN,M,Sq

N lnpS ` 1q
ď r, (64)

where in (64) we leveraged (39) and (40) and then used the
fact that L is nonincreasing in its second argument and so
LpN,M,Sq ď LpN,N, Sq “ pS ` 1qN . We conclude that
this encoding scheme has average bit-rate less than r.

This concludes the proof of Theorem 2.
An unexpected consequence of Theorems 1 and 2 is that

when it is possible to drive the state of process (1) to 0
with a given average bit-rate r, one can always find M -of-
N encoders that stabilize it for (essentially) the same average
bit-rate and average cost per symbol not exceeding S{pS`1q,
i.e., approximately a fraction 1{pS ` 1q of the symbols
will not consume communication resources. In the most
advantageous case, the encoder/decoder use the alphabet
t0, 1u and the encoder’s symbol stream consumes no more
than 50% of the communication resources.

The following summarizes this observation.
Corollary 1: If process (1) can be bounded with an en-

coder/decoder pair with average bit-rate r, then for any ε ą 0
and S P Ną0 there exists an M -of-N encoder using alphabet
t0, . . . , Su with average bit-rate r ` ε and average cost per
symbol not exceeding S{pS ` 1q that bounds its state.

Proof of Corollary 1. Since the original encoder/decoder
pair bounds the state, then by (4) we have

ÿ

i:<λirAsą0

λirAs ď r ln 2 ă pr ` εq ln 2

“ pr ` εqf

ˆ

S

S ` 1
, S

˙

ln 2.

Applying Theorem 2 completes the proof.

The price paid for using an encoder/decoder with average
cost per symbol close to S{pS ` 1q is that it may require
prohibitively long codewords (large N ) as compared to an
encoder with higher average cost per symbol. To see this,
note that fpγ, Sq “ 1 when γ P rS{pS ` 1q, 1s and recall
that lnLpN,Nγ, Sq{N is monotonically nondecreasing in γ
and N . Hence, with r and S fixed, one can decrease γ from
1 toward S{pS ` 1q and still satisfy (40) by increasing N .
This can be seen in Figure 3.
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Remark 3: In the problem statement, xp0q was assumed
to belong to a known bounded set. If the region X0 is not
precisely known, the proposed scheme could be modified by
introducing an initial “zooming-out” stage as described in
[1], where the encoder picks an arbitrary box to quantize
and successively zooms out at a super-linear rate until the
box captures the state.

V. EVENT-DRIVEN ENCODERS

In Section IV we constructed an N -of-M encoding
scheme that stabilizes process (1) provided that the bit-rate
and average cost condition (31) holds. This scheme may be
difficult to implement in practice if the encoder/decoder pair
use a large number of codewords. In this section we present
an event-based encoding scheme that is easy to implement
and does not require storing a large set of codewords. Instead,
it uses a library of only three symbols t´1, 0, 1u and does
not group them into codewords. The basic idea is to monitor
in parallel each one-dimensional component of the error
system from Lemma 4, and as long as it stays inside a
fixed interval, send the free symbol 0. A non-free symbol
is sent only when the one-dimensional component of the
error leaves the interval: send ´1 if the error exited the
left side of the interval and send 1 if it exited out the
right side. Communication resources are therefore consumed
only upon the occurrence of this event, justifying the label
event-based. The proposed scheme resembles the distributed-
sensor scheme of [23], in that each coordinate of a plant
measurement is sent by a dedicated encoder to a central
decoder.

The proposed scheme has similarities with the one from
Section IV in the following ways: the encoder and decoder
each estimate the process as x̂ using (33); the emulation-
based controller is u– Kx̂, where K is a stabilizing state-
feedback gain; Lemma 4 decouples the error system into
nb sub-systems; each of nb sub-encoders monitors the di-
dimensional component of the error and transmits a block
of symbols every Ti time units; only the unstable systems U
require transmission. If A is diagonalizable over C, then this
event-based encoding scheme reduces to the one proposed
in [20].

Unlike the scheme from Section IV, this scheme differs
in what symbols are sent and how the state estimate x̂ is
updated: For i P U , at time kTi, k P Ną0 (with Ti to be
determined shortly), the sub-encoder i monitors the di scalar
components ei,jptq P R, j P t1, . . . , diu of eiptq, and for each
one sends a symbol si,jpkq P t´1, 0, 1u according to

si,jpkq “

$

’

&

’

%

´1 ei,jpkTiq ă ´Lj

0 ei,jpkTiq P r´Lj , Ljs

1 ei,jpkTiq ą Lj

k P Ną0,

(65)

with the event boundaries Lj ą 0 also to be determined
shortly. The encoder and decoder then each update their state
estimates as

x̂pkTiq
` “ x̂pkTiq

´`P pkTiq
´1vi,j∆i,jpsi,jpkqq,

i P t1, . . . nu, k P Ną0, (66)

where the unit vector vi,j P Rdi satisfies ei,jptq “ v1i,jeptq,
x̂ptq` and x̂ptq´ denote limiting values of x̂ptq from above
and below t, P ptq is from Lemma 4, and the decoding
function ∆i,j : t´1, 0, 1u Ñ R is defined as

∆i,jpsq–

$

’

&

’

%

´
Lj
2 p1` exppaiTiqq s “ ´1

0 s “ 0
Lj
2 p1` exppaiTiqq s “ 1,

(67)

where ai – <λirAs is defined as before. Note that the
nonzero values of ∆i,j are merely the midpoints of the
intervals rLj , Lj exppaiTiqs and r´Lj ,´Lj exppaiTiqs.

The event-based encoding/decoding scheme and controller
are described in pseudo-code as Algorithms 1 and 2 below.

Algorithm 1: (Encoder)
Set state estimate x̂p0q Ð 0
Continuously compute state estimate x̂ptq from (33)
for each sub-encoder i P U in parallel, do

for time t “ kTi, k P t1, 2, . . .u do
measure state xptq and compute eiptq from (34)
for each scalar component ei,jptq, j P t1, . . . , diu,
do

compute si,jpkq from (65) and transmit it to de-
coder
update x̂ptq from (66)

end for
end for

end for
Algorithm 2: (Decoder)
Set state estimate x̂p0q Ð 0
Continuously compute state estimate x̂ptq from (33)
Continuously compute actuation signal uptq– Kx̂ptq
for each sub-decoder i “ 1 to n in parallel, do

for time t “ kTi, k “ 1, 2, . . . do
receive si,jpkq from the encoder
update x̂ptq from (66)

end for
end for
This concludes the description of the event-based en-

coder/decoder pair, except for the precise choice of the
transmission periods Ti and the event boundaries Lj . The
following result states that if the average bit-rate and average
cost per symbol satisfy a particular condition, then one can
choose transmission periods and event boundaries for which
this scheme obeys the communication constraints and bounds
the process state.

Theorem 3: Consider process (1), and assume that A `
BK is Hurwitz. For every γ P r0, 1s and r ą 0 satisfying

r
h´1pγq

ln 3
ln 2 ě

ÿ

i:<λirAsą0

λirAs, (68)

hpxq–
x

ln 2
ex´1

, x P p0, ln 3q, hp0q– 0, (69)

there exists an emulation-based controller and event-based
encoder/decoder pair of the type described above that keeps
the state of the process bounded for every initial condition
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in X0; the encoder has average bit-rate not exceeding r and
has average cost per symbol not exceeding γ.

Remark 4: Whereas the necessary and sufficient bounds
from Theorems 1 and 2 had the term fpγ, Sq, the event-
based encoding bound in (68) has the term h´1pγq{ ln 3. The
ratio gpγ, Sq – fpγ, Sq{ph´1pγq{ ln 3q captures the factor
by which the event-based bound exceeds the tight theoretical
bound developed in the previous sections. This factor is a
function of the encoder’s average cost per symbol γ and the
alphabet size S, and is plotted in Figure 4 for S “ 2 and
S “ 1. Since the event-based encoder has S “ 2, the gpγ, 2q
curve provides a “fair” comparison between the event-based
encoder and all other encoders with alphabet size S “ 2.
The gpγ, 1q curve compares the event-based encoder with
all other encoders with the smallest (most efficient) alphabet,
S “ 1. We observe:
‚ gpγ, 1q ă 2.43 for all γ P p0, 1s.
‚ gpγ, 2q ă 2.0 for all γ P p0, 1s.
‚ gp1, Sq “ ln 3{ ln 2 « 1.58 for all S P Ną0.

The first point guarantees that this encoding and control
scheme is never more than 2.43 times more conservative
than the optimal bound established in Theorems 1 and 2.
Specifically, if a given process may be bounded with a certain
average bit-rate r, then there exists an average bit-rate rr
not exceeding 2.43r such that this event-based scheme can
bound the process using average bit-rate rr. The second point
establishes that this event-based scheme never requires more
than twice the average bit-rate of any stabilizing N -of-M
encoding scheme that, like this scheme, uses a three-symbol
alphabet. The third point states that as the communication
constraint relaxes (γ Ñ 1), this event-based encoding scheme
is only 1.58 times more conservative than the optimal average
bit-rate bound from Theorems 1 and 2. A consequence of

0.0 0.2 0.4 0.6 0.8 1.0
Γmax0.0

0.5

1.0

1.5

2.0

2.5

Fig. 4. Plot of gpγ, Sq versus γ, for S “ 1 (thick solid line) and S “ 2
(thin solid line).

gpγ, Sq ą 1 is that event-based encoders are sub-optimal in
the following sense: if r, γ, and S satisfy (68), then there
exists rr – r{gpγ, Sq ă r for which rr, γ, and S satisfy
(31). Therefore, whenever Theorem 3 could be invoked
with pr, γ, Sq to build a stabilizing event-based encoding
scheme, one could instead invoke Theorem 2 with prr, γ, Sq
to construct a stabilizing M -of-N encoding scheme with
a smaller average bit-rate. This is the price paid for the
convenience of the simple event-based logic as opposed to

having to implement an encoder/decoder with a (possibly
quite large) library of M -of-N codewords.

Remark 5: In Remark 2 it was noted that the sufficiency
result in Theorem 2 would not bound the process state if the
data-rate condition (31) held only with equality. In contrast,
if the present data-rate inequality (68) holds with equality,
the following event-based scheme bounds the state of the
process, as we will show in the proof of Theorem 3. How-
ever, the two sufficiency results of Theorem 2 and Theorem 3
are consistent in the sense that if their data-rate conditions
[(31) and (68) respectively] hold with strict inequality, then
exponential stabilization can be achieved, with the rate of
exponential convergence determined by the “gap” in the
inequality. To see this for the present scheme, suppose (68)
holds with strict equality and let xptq– eεtxptq, where ε ą 0
is small enough that

r
h´1pγq

ln 3
ln 2 ą

ÿ

i:<λirAsą0

λirAs ` nε, (70)

and suppose A ` εI ` BK is Hurwitz. Applying Theorem
3 to the x system provides a controller and encoder/decoder
that bounds x. However, }xptq} ď c is equivalent to }xptq} ă
ce´εt, so the state xptq converges to 0 exponentially fast.

A. Proof of Theorem 3
The main idea behind the proof is to show that, when

assumption (68) holds, it is possible to allocate the available
average bit-rate among sub-encoders in such a way that each
sub-encoder has a sufficiently large average bit-rate to bound
its components of the state estimation error.

For the sub-encoder i P U , we pick the transmission period
Ti as

Ti – h´1pγq{pai ` ηq, (71)

where the definition of h is from (69) and η ą 0 satisfies

r
h´1pγq

ln 3
ln 2 ě

ÿ

i:<λirAsą0

λirAs ` nη. (72)

As mentioned above, no information needs to be sent on
behalf of the stable systems i P S.

The event boundaries Lj ą 0 are chosen as follows. Define

τ i –
1

ai
ln

ˆ

2

epai`ηqTi ´ 1

˙

. (73)

Note that 8 ą τ i ą 0 because ai ą 0 for i P U and
2

epai`ηqTi´1
ą 1 by our choice of Ti. Next, pick 1 ą φ ą 0

sufficiently small so that

φ ă e´Ti{4 (74)

τ i ď
1

ai
ln

ˆ

2

peai Tip1` 2eTiφq ´ 1` 2eτ iφ

˙

(75)

for all i P U . Finally, define the event boundaries recursively
as

Ln – sup
x0PX0

}P p0qx0}8 (76)

Lj –
1

φ

n
ÿ

l“j`1

Ll j P t1, . . . , n´ 1u. (77)
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1) The scheme’s average bit-rate does not exceed r: For
i P U , sub-encoder i sends di symbols from the alphabet
t´1, 0, 1u every Ti time units, resulting in an average bit-
rate of

ri – di log2 3{Ti, (78)

and so the average bit-rate used by the encoder as a whole
is simply

ÿ

iPU
ri “ log2 3

ÿ

iPU

di
Ti
“

log2 3

h´1pγq

ÿ

iPU
dipai ` ηq (79)

“
log2 3

h´1pγq

¨

˝

ÿ

i:<λirAsą0

λirAs ` nη

˛

‚ď r, (80)

where the last inequality follows from hypothesis (68).
Hence, this encoding scheme uses an average bit-rate of r
or less.

2) The scheme stabilizes the process: Next we show that
this controller and event-based encoder/decoder pair bound
the state of process (1). In view of (45), this is ensured if
eptq is bounded. Since eiptq Ñ 0 for i P S, we focus on
eiptq for i P U .

We proceed with an inductive proof that the sequence
tei,jpkTiq

`ukPNą0
is bounded for i P U , j P t1, . . . , diu.

The base of induction k “ 0 follows from the definition
of Lj in (76). Next we prove that ei,jpkTiq` P r´Lj , Ljs
provided that ei,lpkTi´Tiq` P r´Ll, Lls for l P tj, . . . , diu.
If ei,jpkTi ´ Tiq

` is so small that it does not grow outside
the box r´Lj , Ljs by the next timestep, then we naturally
have ei,jpkTiq` P r´Lj , Ljs. On the other hand, suppose at
a specific time t˚ satisfying kTi´Ti ď t˚ ă kTi, the scalar
error ei,jpt˚q grows to the boundary of the box r´Lj , Ljs;
without loss of generality suppose ei,jpt˚q “ Lj . Up to Ti
time units later, the timestep kTi occurs and the sub-encoder
i transmits si,jpkq “ 1 to the decoder. Upon receiving
symbol 1, the decoder knows from the encoding scheme
(65) that the scalar error ei,jpkTiq´ immediately before the
transmission must have exceeded the event boundary Lj and
hence ei,jpkTkq´ ą Lj . Moreover,

|ei,jpkTiq
´| “ |v1i,jeipkTiq

´| (81)

“ |v1i,je
aiTiGipTiqeipkTi ´ Tiq

`| (82)

ď eaiTi

ˇ

ˇ

ˇ

ˇ

ˇ

di´j
ÿ

l“0

T li
l!
ei,j`lpkTi ´ Tiq

`

ˇ

ˇ

ˇ

ˇ

ˇ

(83)

ď eaiTi
´

|ei,jpkTi ´ Tiq
`|

`

di´j
ÿ

l“1

T li
l!

di´j
ÿ

l“1

|ei,j`lpkTi ´ Tiq|
`
¯

(84)

ď eaiTi

˜

Lj `
di´j
ÿ

l“1

T li
l!

di´j
ÿ

l“1

Lj`l

¸

(85)

ď eaiTiLj
`

1` eTiφ
˘

, (86)

where vi,j P Rdi is a unit vector satisfying (81), (82)
follows from the error dynamics (35) in Lemma 4, (83)
follows from the definition of the matrix GipTiq, (84) follows

from the triangle inequality, (85) follows from the induction
hypothesis, and (86) follows by the definition of φ, and by
upper-bounding the sum

řdi´j
l“1 T li {l! by eTi . Therefore the

decoder can conclude that

ei,jpkTiq
´ P pLj , Lj e

ai Tip1` eTiφqs. (87)

We can express the scalar error ei,jpkTiq´ as the overall
error vector epkTiq´ P Rn times an appropriate unit vector:

ei,jpkTiq
´ “ v1i,jepkTiq

´ (88)

“ v1i,jP pkTiqpxpkTiq
´ ´ x̂pkTiq

´q. (89)

Rearranging the update rule (66) yields an expression for
x̂pkTiq

´:

x̂pkTiq
´ “ x̂pkTiq

` ´ P pkTiq
´1vi,j∆i,jp1q. (90)

Substituting this into (89) yields

ei,jpkTiq
´ “ v1i,jP pkTiq

`

xpkTiq
´´

x̂pkTiq
` ` P pkTiq

´1vi,j∆i,jp1q
˘

“ v1i,jP pkTiq
`

xpkTiq
´ ´ x̂pkTiq

`
˘

`∆i,jp1q

“ ei,jpkTiq
` `∆i,jp1q,

where we used the fact that xpkTiq´ “ xpkTiq
` due to the

continuity of the solution xptq. Substituting this into (87)
yields

ei,jpkTiq
` `∆i,jp1q P pLj , Lj e

ai Tip1` eTiφqs (91)

which is equivalent to

ei,jpkTiq
` P

ˆ

´
Ljpe

ai Ti ´ 1q

2
,
Ljpe

ai Tip1` 2eTiφq ´ 1q

2



.

(92)

Recall that Ti was chosen to satisfy hpai Tiq “ γ ď 1.
Applying h´1 to this yields ai Ti ď ln 2, and so eai Ti ď 2.
Combining this with the upper bound (74) on φ yields

Ljpe
ai Tip1` 2eTiφq ´ 1q

2
ă Lj . (93)

Applying this to (92) establishes that

ei,jpkTiq
` P p´Lj , Ljq (94)

and completes the inductive proof that the sequence
tei,jpkTiq

`ukPNą0
is bounded. Since this holds for arbitrary

j P t1, . . . , diu, the sequence teipkTiq`ukPNą0
Ă Rdi is also

bounded. Following a similar argument to (57), we conclude
that eiptq is bounded for any t ě 0. Since eiptq is bounded
for all i P U and ejptq Ñ 0 for j P S, this controller and
encoder/decoder pair bound the estimation error. Therefore
the state is bounded for all time as well.
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3) The scheme’s average cost per symbol does not exceed
γ: Lastly we prove that this encoding scheme has average
cost per symbol not exceeding γ. The symbol stream emitted
by the encoder is comprised of the |U | individual symbol se-
quences tsi,jpkqukPNą0

, i P U , j P t1, . . . , diu. We first show
that each individual symbol sequence has average cost per
symbol not exceeding γ. Then we show that superimposing
these sequences preserves this property.

Consider the scalar error component ei,jptq, i P U , j P
t1, . . . , diu. By (94) we have |ei,jpkTiq`| ă Lj with strict
inequality. So there will be a strictly positive period of time
with duration τi,j ą 0 starting at time kTi until ei,jptq grows
to leave the r´Lj , Ljs box. During this time, no non-free
symbols will be transmitted. The “dead time” τi,j is simply
the amount of time required for the bound Lj

´

eai Tip1 `

2eTiφq ´ 1
¯

{2 in (92) to grow to size Lj . Specifically, the
dead time τi,j satisfies |ei,jpτi,j ` kTiq| “ Lj provided that
|ei,jpkTiq| ď Lj

´

eai Tip1 ` 2eTiφq ´ 1
¯

{2. We now prove
that the parameters τ i were chosen so that

|ei,jpτ i ` kTiq| ď Lj (95)

provided that

|ei,jpkTiq
`| ď Lj

´

eai Tip1` 2eTiφq ´ 1
¯

{2, (96)

and therefore τ i lower-bounds the dead time τi,j . Following
a similar process to (81), we have

|ei,jpτ i ` kTiq| “ |v
1
i,jeipτ i ` kTiq| (97)

“ |v1i,je
aiτ iGipτ iqeipkTiq

`| (98)

ď eaiτ i

ˇ

ˇ

ˇ

ˇ

ˇ

di´j
ÿ

l“0

τ li
l!
ei,j`lpkTiq

`

ˇ

ˇ

ˇ

ˇ

ˇ

(99)

ď eaiτ i
´

|ei,jpkTiq
`|

`

di´j
ÿ

l“1

τ li
l!

di´j
ÿ

l“1

|ei,j`lpkTiq|
`
¯

(100)

ď eaiτ i
´

Lj
eai Tip1` 2eTiφq ´ 1

2

`

di´j
ÿ

l“1

τ li
l!

di´j
ÿ

l“1

Lj`l

¯

(101)

ď eaiτ iLj

ˆ

eai Tip1` 2eTiφq ´ 1

2
` eτ iφ

˙

(102)
ď Lj , (103)

where vi,j P Rdi is a unit vector satisfying (97), (98) follows
from the error dynamics (35) in Lemma 4, (99) follows from
the definition of the matrix Gipτ iq, (100) follows from the
triangle inequality, (101) follows from the premise (96) and
also (94), (102) follows by the definition of φ, and by upper-
bounding the sum

řdi´j
l“1 τ li{l! by eτ i , and (103) follows from

(75). We conclude that τ i ď τi,j .
Therefore by (73) we have

τi,j ě τ i –
1

ai
ln

ˆ

2

epai`ηqTi ´ 1

˙

(104)

“

ˆ

ai ` η

ai

˙ˆ

Ti
hppai ` ηqTiq

˙

(105)

ô
Ti
τi,j

ď
ai

ai ` η
γ ă γ, (106)

where (105) and (106) follow from the definitions of h
and Ti. This establishes a bound on the number of non-
free transmissions as follows. Consider the symbol se-
quence tsi,jpkqukPNą0

emitted by this encoding scheme.
Let N2, N1 be arbitrary positive integers, and let Nnf –
řN1`N2´1
k“N1

Isi,jpkq‰0 be the number of non-free symbols
among symbols si,jpN1q, . . . , si,jpN1 `N2 ´ 1q. Let tl, l P
t1, . . . , Nnfu be the time that the lth non-free transmission
occurred. The tl satisfy N1Ti ď t1 ă . . . ă tNnf ď

pN1 `N2 ´ 1qTi. Only free symbols are transmitted in the
time interval rtl, tl ` τi,jq, and so

tl ě τi,j ` tl´1, @l “ 2, . . . , Nnf. (107)

Iterating this formula over l, we obtain

tNnf ě τi,jpNnf ´ 1q ` t1. (108)

Rearranging this and using the facts that N1Ti ď t1 and
tNnf ď pN1 `N2 ´ 1qTi, we obtain

N1`N2´1
ÿ

k“N1

Isi,k‰0 — Nnf ď
Ti
τi,j

N2 ` 1 ď γN2 ` 1,

where we leveraged (106). This implies the average cost per
symbol condition (3), so we conclude that for any i P U and
any j P t1, . . . , diu, the symbol sequence tsi,jpkqukPNą0

has
average cost per symbol not exceeding γ.

Finally we show that superimposing the symbol streams
results in a stream with average cost per symbol not exceed-
ing γ. Let N1, N2 P N be arbitrary positive integers, and
let Ji, i P U partition tN1, N1 ` 1, . . . , N1 `N2 ´ 1u such
that Ji is the set of indices between N1 and N1 ` N2 ´ 1
where the transmitted symbol was sent by sub-encoder i.
Then

ř

iPU |Ji| “ N2, and we obtain

N1`N2´1
ÿ

k“N1

Isi,k‰0 “
ÿ

iPU

ÿ

kPJi

Isi,k‰0

ď
ÿ

iPU
pγ|Ji| `N0,iq

“ γN2 `N0,

where N0 –
ř

iPU N0,i. The inequality comes from leverag-
ing (3) for each sub-encoder on its respective index interval
Ji. This completes the proof of Theorem 3.

B. Numerical example

In this subsection we present a numerical example of the
event-based encoding scheme from Section V.

Consider process (1) with

A–

„

57 ´25
125 ´53



B –

„

1
0



K –

„

´7
3.784



,

for which λrAs “ 2˘10i and K is the state-feedback gain of
a stabilizing emulation-based controller. Suppose the initial
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condition is known to lie in the box X0 – tpx1, x2q : ´1 ď
xi ď 2u, and that xp0q – p1,´1q. Using the coordinate
transformation from Lemma 4 yields the open-loop error
system 9eiptq “ 2eiptq for i P t1, 2u. Note that although
the two error components grow at the same rate, their initial
conditions are different: e1p0q “ ´3, e2p0q “ 2.

With average bit-rate r – 10, average cost per symbol
γ “ 0.2, and alphabet A – t0, 1u, the sufficient bound (31)
is satisfied. Following the encoder design in Subsection IV-
A.1, we pick N – 10, M – 2, and Ti “ 1.9 for i P t1, 2u.
There are LpN,M,Sq “ 56 length-10 codewords with 2
or fewer non-free symbols. In accordance with the encoder
design in Subsection IV-A.1, at time kTi, k P Ną0, sub-
encoder i measures the scalar eipkTiq, quantizes it into
one of 56 bins — one per codeword — and transmits
the appropriate 10-symbol codeword to the decoder. Then
the encoder and decoder each update their state estimate
according to (43). One observes the state xptq of the closed-
loop system converging to 0. Plots were omitted for space
reasons.

Next we demonstrate an event-based controller to stabilize
the same system. Note that r “ 10 and γ “ 0.2 do not
satisfy the sufficient bound (68), so they cannot be used
in Theorem 3. Instead we use r – 21, leaving γ – 0.2
as before. This satisfies (70) with ε “ 0.1, so we apply
Theorem 3 to obtain an encoder/decoder and controller that
together bound the system xptq – e0.1txptq, and therefore
xptq decays exponentially. This is illustrated in Figures 5 and
6.

With the codeword-based encoder, the two sub-encoders
each transmit up to 2 non-free symbols every 1.9 time units,
resulting in a total average rate of resource consumption of
2.1 non-free transmissions per time unit. On the other hand,
the event-based encoder’s two sub-encoders each transmit a
symbol every 0.151 time units, and a fraction γ “ 0.2 of
these symbols are non-free. Therefore this event-based en-
coder consumes communication resources at a total average
rate of 2.65 non-free transmissions per time unit. This is in
accordance with Remark 5: this larger rate of consumption is
the price paid for using an easier-to-implement event-based
encoding scheme.

VI. CONCLUSION AND FUTURE WORK

In this paper we considered the problem of bounding the
state of a continuous-time linear process under communi-
cation constraints. We considered constraints on both the
channel average bit-rate and the encoding scheme’s average
cost per symbol. Our main contribution was a necessary and
sufficient condition on the process and constraints for which
a bounding encoder/decoder/controller exists. In the absence
of a limit on the average cost per symbol, the conditions
recovered previous work. A surprising corollary to our main
result was the observation that one may impose a constraint
on the average cost per symbol without necessarily needing
to loosen the average bit-rate constraint. Specifically, we
proved that if a process may be bounded with a particular
average bit-rate, then there exists a (possibly very complex)

5 10 15 20
time

-6

-4

-2

0

2

4

6

e1(t)

Fig. 5. Plot of the closed-loop state estimation error component e1ptq for
the xptq system, using the event-based encoding scheme. Once the error
leaves r´L1, L1s (thin dashed lines), a non-free symbol is transmitted at the
next transmission time. The error stays bounded between ´L1epa1`0.1qT1

and ´L1epa1`0.1qT1 (thick dashed lines). Unlike the encoder from Sec-
tion IV, the transmission of non-free symbols is event-triggered and non-
periodic.

10 20 30 40 50 60
time

-40
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40
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Fig. 6. Plot of the closed-loop state x1ptq exponentially decaying to 0
using the event-based encoding scheme described in Section V. The curve
100e´0.1t is plotted for reference.

encoder/decoder that can bound it with that same average
bit-rate, while using no more than 50% non-free symbols
on average. One would expect that the prohibition of some
codewords would require that the encoder necessarily com-
pensate by transmitting at a higher average bit-rate, but this
not the case.

Another surprising result was the observation that, for
any constraint on average bit-rate and average cost per
symbol satisfying the necessary and sufficient conditions
for stability, one can always construct a stabilizing en-
coder with an arbitrarily small average cost per time unit.
In many communication-constrained control problems this
is the quantity of interest. We observed that constructing
such an encoder boils down to either having precisely-
synchronized clocks between the encoder and decoder, or
storing a large symbol library on the encoder and decoder.

We then examined an event-based controller and proved
its average bit-rate requirements were order-optimal with
respect to the necessary and sufficient condition for stabi-
lizability. This supports the use of event-based controllers in
limited-communication control schemes.

The controller in the event-based scheme of Section V
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required state feedback. This could be extended to an output-
feedback setting by embedding a state observer in the en-
coder, which is the subject of future work.

APPENDIX

Proof of Lemma 1. Let ` P Ně0 be arbitrary. Since the pair’s
average cost per symbol is at most γ, (3) holds for some
N0 P Ną0. Rearranging (3) yields

N1`N2´1
ÿ

k“N1

Isk‰0 ď N2γ `N0, @N1, N2 P Ną0. (109)

Let N be any positive integer greater than pN0 ` 1q{εγ and
define M – tNγ`N0`1u. Invoking (109) for N1 – `N`1
and N2 – N yields

`N`N
ÿ

k“`N`1

Isk‰0 ď Nγ `N0 ďM

ď Nγ `N0 ` 1 ă Nγp1` εq. (110)

Therefore we have found an M and N satisfying M ă

Nγp1 ` εq and moreover (110) implies the condition (8)
defining M -of-N encoders. This completes the proof.

Proof of Lemma 4. There exists a real invertible matrix Q P
Rnˆn that transforms A to its real Jordan normal form,
namely

Q´1AQ “ Λ – diag pJ1, . . . , Jnbq ,

where the Ji are real Jordan blocks: for real eigenvalue ai
with geometric multiplicity di, the corresponding real Jordan
block Ji P Rdiˆdi has the form

»

—

–

ai 1
. . .

ai

fi

ffi

fl

; (111)

for a complex conjuguate pair of eigenvalues ai ˘ jbi
with multiplicity di, the associated real Jordan block Ji P
R2diˆ2di has the form

»

—

–

Λi I2
. . .

Λi

fi

ffi

fl

, (112)

where the 2-by-2 matrix Λi P R2ˆ2 has the form

Λi –

„

ai bi
´bi ai



. (113)

Next, define the time-varying invertible block-diagonal ma-
trix Rptq P Rnˆn, t ě 0 as

Rptq– diag pR1ptq, . . . , Rnbptqq (114)

where Riptq – Idi P Rdi if Ji corresponds to a real
eigenvalue ai, and Riptq – diagpΘiptq

´1q P R2diˆ2di if
Ji corresponds to a complex conjugate eigenvalue ai ˘ jbi,
where

Θiptq–

„

cospbitq ´ sinpbitq
sinpbitq cospbitq



P R2ˆ2. (115)

Let P ptq– RptqQ´1, t ě 0. We have

eptq– P ptqpxptq ´ x̂ptqq (116)

“ RptqQ´1eAtpxp0q ´ x̂p0qq (117)

“ RptqQ´1eQdiagpJiqQ
´1tpxp0q ´ x̂p0qq (118)

“ RptqediagpJiqtQ´1pxp0q ´ x̂p0qq (119)

“ RptqediagpJiqtep0q (120)

“ RptqdiagpeJitqep0q, (121)

where (119) follows from a well-known property of the
matrix exponential, and (120) follows the definition of ep0q
and the observation that Rp0q is the identity matrix. A well-
known property of real Jordan blocks is that

eJit “ eait

»

—

—

—

—

—

–

1 t t2

2! . . . tdi´1

pdi´1q!

1 t
. . .

1

fi

ffi

ffi

ffi

ffi

ffi

fl

(122)

if the real Jordan block Ji corresponds to a real eigenvalue,
and

eJit “ eait

»

—

—

—

—

—

–

Θiptq Θiptqt Θiptq
t2

2! . . . Θiptq
tdi´1

pdi´1q!

Θiptq Θiptqt
. . .

Θiptq

fi

ffi

ffi

ffi

ffi

ffi

fl

(123)

if it corresponds to a complex conjugate pair. In terms of
Riptq and Giptq these equations become simply

eJit “ eaitRiptq
´1Giptq. (124)

Using this in (121) yields

eptq “ RptqdiagpeaitdiagpRiptq
´1Giptqqqep0q (125)

eptq “ diagpRiptqqdiagpRiptq
´1qdiagpeaitGiptqqep0q

(126)
eptq “ diagpeaitGiptqqep0q, (127)

implying (35).
Lastly, it is straightforward to verify that the minimum
singular value of Riptq is σminpRiptqq “ 1 for any t.
Moreover, since Q is invertible, there exists ε ą 0 for which
σminpP ptqq ě ε for all t. This concludes the proof.

Lemma 5: For any N P Ną0 and M P Rě0 with M ď

N , every M -of-N encoder has average cost per symbol not
exceeding M{N .

Proof of Lemma 5. Suppose M and N are fixed and con-
sider a sequence of N2 symbols starting at index N1, for
arbitrary N1, N2 P Ną0. This index sequence tN1, . . . , N1`

N2´1u overlaps or partially overlaps with at most rN2{N s`

1 of the fixed N -symbol codewords. Each codeword has at
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most M non-free symbols. Therefore the number of non-free
symbols in the sequence is upper-bounded by
N1`N2´1

ÿ

k“N1

Isk‰0 ďM prN2{N s` 1q

ďMpN2{N ` 2q “
M

N
N2 ` 2M. (128)

We let N0 – 2M and rearrange terms to obtain (3), the
definition of average cost, with γ “M{N .

Lemma 6: The following inequality holds for all N,S P
Ną0, q P p0, S{pS ` 1qs, and i P r0, Nqs:

qip1´ qqN´i ě 2´N Hpqq Si

SNq
(129)

where Hpqq– ´q log2 q´ p1´ qq log2p1´ qq is the base-2
entropy of a Bernoulli random variable with parameter q.

Proof of Lemma 6. Let N,S, q, and i take arbitrary values
from the sets described in the lemma’s statement. Since log2

is a monotone increasing function, log2pq{p1´qqq for q ą 0
is maximized at the right endpoint value, q “ S{pS ` 1q,
where it equals log2 S. This leads to

log2 q ´ log2p1´ qq ď log2 S (130)

for all S P Ną0 and q P p0, S{pS ` 1qs. Next, i P r0, Nqs
by assumption, therefore i´Nq ď 0. Multiplying (130) by
i´Nq and straightforward algebraic manipulation yields

i log2 q ` pN ´ iq log2p1´ qq

ě Nq log2 q `Np1´ qq log2p1´ qq ` pi´Nqq log2 S

“ ´NHpqq ` pi´Nqq log2 S,

where the equality follows from the definition of Hpqq.
Raising 2 to the power of both sides, (129) follows.
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